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Manifestations of chaos in atoms,
molecules and quantum wells

By T. S. Monteiro, S. M. Owen and D. S. Saraga

Department of Physics and Astronomy, University College London,
Gower Street, London WC1E 6BT, UK

The role of atoms and related systems in external fields in the study of the mani-
festations of classical chaos in quantum systems is reviewed. Periodic orbit theory is
a major theoretical framework for the interpretation of the irregular atomic spectra
that are observed when the corresponding classical motion is chaotic: quantum spec-
tra are modulated and ‘scarred’ by unstable periodic orbits, isolated in a surrounding
‘sea’ of chaotic paths. Recent work has additionally highlighted contributions from
other, classically forbidden types of paths, for example, diffractive orbits in non-
hydrogenic atoms, ‘ghost’ periodic orbits near bifurcations, tunnelling orbits which
allow quantum transport through potential barriers and dynamical barriers such as
tori, and also orbits of a new type—saddle orbits—that are important in experi-
ments probing localized observables. Techniques of atomic physics such as R-matrix
and Floquet methods and scaled-energy spectroscopy have been important in expos-
ing some of these effects.

Keywords: atoms; chaos; quantum chaos;
semiclassical methods; mesoscopic physics

1. Introduction to quantum chaos

(a) Quantum chaos on short time-scales: periodic orbits and beyond

Quantum spectra for which the corresponding classical motion is chaotic are extreme-
ly irregular in appearance. Individual quantum states defy classification in terms of
quantum numbers since in general there is no conserved quantity, other than the
energy. Hence one impetus to quantum chaology has been the need for a means
to interpret and classify such dense and disordered spectra. The earliest approach
involved the study of statistical distributions of energy levels in order to identify ‘uni-
versal’ properties common to very different dynamical systems, but atomic experi-
ments in particular singled out a formula derived by Gutzwiller as a powerful tool
for the interpretation of the spectra of highly excited atoms in external fields.

In the Feynman picture, the quantum dynamical behaviour is obtained as a sum
of interfering paths each associated with a phase, given by its action S and an ampli-
tude A, ∼∑A exp iS/~. At high energies, in the semiclassical limit, the phases S/~
associated with different paths are large (this is referred to as ~ → 0 limit). Hence,
neighbouring paths rapidly fall out of phase and their rapidly oscillating contribu-
tions cancel by destructive interference. The most important contributions come from
paths for which the action is stationary; in other words, where neighbouring paths
interfere constructively.
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By evaluating the relevant oscillating Feynman path integrals by stationary phase,
Gutzwiller was able to relate a chaotic quantum spectrum to a sum over certain clas-
sical paths. These are the classical trajectories that are isolated and unstable but
retrace themselves repeatedly: periodic orbits. The importance of this work became
clear in experiments and theory in atomic physics in the 1980s (Wintgen 1987; Holle
et al . 1988; Friedrich & Wintgen 1989). Apparently, random atomic energy level
spectra and photoabsorption spectra were shown to have underlying regularities cor-
responding to periodic orbits. When certain scaling transformations are exploited
these can easily be exposed by a simple Fourier transform, as seen in figure 1. We can
see that the Fourier transformed spectra are very cleanly modulated by oscillations
at well-defined frequencies. These frequencies correspond to the actions of classical
periodic orbits. The heights of the peaks are determined accurately by the stability
of the classical orbits. The photoabsorption peaks are different from the eigenvalue
modulations since photoabsorption spectra are not described by the Gutzwiller for-
mula but by a related semiclassical theory: closed orbit theory (Du & Delos 1988;
Alber 1989; Bogomolny 1989; Gao et al . 1992). Some of the peaks correspond to
stable orbits, others to unstable orbits. In the latter case the stability parameter
(Liapunov exponent) determines the rate at which neighbouring paths diverge expo-
nentially. A periodic orbit can be stabilized or destabilized at a bifurcation.

Figure 2 illustrates the quantal manifestation of the loss of stability of an impor-
tant periodic orbit (R1) of a hydrogen atom in a magnetic field. The figures show
a cut through phase space. In the classical case the global phase space structure is
shown. For the quantum case three individual quantum states (their Wigner func-
tions) showing high intensity on the periodic orbit R1 are shown for the stable,
bifurcating and unstable case. For the latter case we see that the classical phase
space seems featureless, while the quantum probability is still highly concentrated
on the isolated unstable periodic orbit. This phenomenon is termed quantum ‘scar-
ring’ (Heller 1984), and is one of the best studied phenomena of quantum chaology.

The applications of periodic orbits and related theories to interpret spectral fea-
tures, not just of atoms but also small electronic devices such as quantum wells in
tilted fields or quantum dots (Marcus et al . 1992; Fromhold et al . 1994; Muller et al .
1995), molecular vibrational spectra (Weston & Child 1996; Huppert et al . 1997; de
Polavieja et al . 1994; Pollak 1990), and even optical properties of laser resonators in
the chaotic regime (Gmachl et al . 1998), have multiplied.

A host of advances have also followed in studies of atoms in static fields. The
first fully quantal calculation on hydrogen in a field was by Clark & Taylor (1982).
Theoretically, a major step was the application of R-matrix theory (Burke et al . 1971)
to calculations of fully quantal spectra of atoms and molecules in fields (O’Mahony &
Taylor 1986; Monteiro & Taylor 1990). The R-matrix method was combined with the
scaling transformations which enable reliable comparison with periodic and closed
orbit theories (Monteiro & Wunner 1990; Jans et al . 1993; Delande et al . 1994) and
showed that non-hydrogenic Rydberg atoms differed strongly in their periodic orbit
behaviour and statistics from hydrogen. In particular, the statistical distributions
indicated that they were near the chaotic limit even at energies where hydrogen
is regular. Monteiro & Wunner (1990) found new spectral modulations not seen in
hydrogen.

Since the classical dynamics was expected to be similar for all atoms, this posed a
problem. After all, hydrogen in magnetic fields is well described by the Gutzwiller for-
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Figure 1. Comparison between calculated m = 0, even parity (a) photoabsorption and (b) energy
level spectra for hydrogen in a magnetic field. (c), (d) The corresponding Fourier transforms that
reveal the periodicities in the spectral modulations. While the actual spectra are very irregular,
the Fourier transformed spectra are very cleanly modulated at specific frequencies. The energy
level spectra are modulated by periodic orbits while photoabsorption spectra are modulated by
closed orbits.

mula. Recently, we were able to show that the Gutzwiller trace formula can be made
to work for all atoms by allowing for a ‘failure’ of the stationary phase approximation
analogous to optical diffraction (Dando et al . 1998). Corrections to the semiclassical
theory of the photoabsorption spectrum were also made (Dando et al . 1995).

The R-matrix-type approach for the solution of non-hydrogenic systems was im-
proved by an efficient method using a Schneider term on the boundary (Delande et al .
1994). This technique, combined with a Lanczos algorithm for diagonalization of the
Hamiltonian matrix, meant the highest Rydberg states that could be calculated went
up from n ∼ 50 to n ∼ 500. Improvements in experimental techniques meant that
scaled spectra resolving the finest detail—individual quantum states—were now pos-
sible. These developments meant that very stringent quantitative tests of closed-orbit
modulations became possible in quantal and experimental atomic photoabsorption
spectra.

Figure 3 shows a comparison between experimental and theoretical modulations
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Figure 2. This figure shows the transition from regular to chaotic dynamics for hydrogen in a
magnetic field B as the scaled energy ε = EB−2/3 is increased. Above are shown three Wigner
functions and classical Poincaré surfaces-of-section for hydrogen atoms in a magnetic field at
scaled energies (a) ε = −0.1 (scarred state), (b) ε = −0.316 (bifurcation) and (c) ε = −0.5
(torus quantization on an island of stability).

for Rydberg helium in a magnetic field. The spectra show diffractive effects (addi-
tional peaks not seen in hydrogen atoms) as well as a peak that is due to another
contribution termed a ‘ghost’.

A ‘ghost’ is a modulation associated with a periodic orbit that has not yet been
born (Kuś et al . 1993). A new quantum spectral oscillation is seen to appear at
energies below a ‘tangent’ bifurcation at which a pair of new periodic orbits (one
stable, the other unstable), is born. Below the bifurcation energy one finds con-
tributions from complex periodic orbits. In an interesting connection with atomic
scattering, the correction to the Gutzwiller formula at a tangent bifurcation (the
formula diverges) is along similar lines to the correction for coalescing stationary
points in semiclassical rainbow scattering (Child 1991) in atomic collisions.

In these studies one cannot stress enough the importance of scaling, where in both
experiment and theory the fields and energy are adjusted simultaneously so as to
keep the classical dynamics constant. Atoms in both static and oscillating fields have
this property. The technique of fixed, scaled-energy spectroscopy was pioneered by
Wintgen (1987) for atoms in static fields.

Some mesoscopic systems also have this property. Mesoscopic systems are elec-
tronic devices small enough that wave-like interference effects become important.
Quantum dots which, like atoms, also exhibit shell structure and spin effects have
been even termed ‘artificial atoms’ (McEuen 1997). Much of the current interest in
quantum chaos centres on mesoscopic systems. Oscillations in the conductance from
coherent recurrences along periodic orbits have been demonstrated for quantum dots
where electrons are confined in circular or stadium-shaped enclosures (Marcus et al .
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Figure 3. Figure shows a comparison between fully quantal and experimental closed-orbit mod-
ulations for helium atoms in magnetic fields (Delande et al . 1994). The arrow indicates the
contribution of a ‘ghost’, a complex periodic orbit that appears in the quantum spectrum at an
energy below the bifurcation at which it is born.

1992). For periodic orbit phenomena, quantum wells in fields (Fromhold et al . 1994)
really stand out. These are a type of realization of a two-dimensional particle in a
box problem, in the presence of electric and magnetic fields. Coherence times in these
experiments are short: only about 1 in 10 electrons survive coherently each circuit
along a periodic orbit, so these systems are most suitable for the short-time regime.
In a set of experiments at Bell Laboratories, Muller et al . (1995) obtained a large
amount of data, comprising tens of thousands of oscillations (a few are shown in
figure 5 below) spanning a wide set of dynamical regimes and enabling one to anal-
yse the results with quantum scaled spectra (Monteiro et al . 1997b). This showed
oscillations that were not well described by periodic orbits, but rather with a new
and peculiar type of complex path, a saddle orbit (Saraga & Monteiro 1998).

In addition to ‘ghosts’ and saddle orbits, complex periodic orbits also occur when
tunnelling through potential barriers is involved. For example, Creagh & Whelan
(1997) investigated a two-dimensional tunnelling problem, with a symmetric double-
well potential. They calculated periodic orbit modulations of the tunnelling-induced
energy splittings of eigenstates in a symmetric double-well potential by including the
complex periodic orbits that cross the barrier. For atoms in electric fields there is a
potential barrier for energies close to the Stark saddle for which the tunnelling has
recently been investigated semiclassically in the fully regular (‘integrable’) regime
(Beims et al . 1998). An interesting type of tunnelling phenomenon is dynamical
tunnelling, which involves quantum transport across phase-space barriers. An con-
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Figure 4. Fluctuations in multiphoton ionization of hydrogen atoms in microwave fields obtained
by diagonalization of the Floquet Hamiltonian (Zakrzewski et al . 1995). The ionization rates
as a function of field from are shown for eigenstates trapped inside stable islands. They show
fluctuations analogous to universal conductance fluctuations seen in chaotic mesoscopic systems.
These appear in a three-dimensional model (top), two-dimensional model (middle) and even
one-dimensional model (bottom).

sequence of this effect has been identified, from fully quantal Floquet calculations
by Zakrewski et al . (1995), in quasi-random fluctuations in the multiphoton ioniza-
tion of certain states of atoms in oscillating fields. These states are non-spreading
wave packets ‘trapped’ inside islands of stability at resonances between the Kepler
frequency and the field. Escape to the continuum occurs by tunnelling out of this
island into the surrounding chaotic ‘sea’. These observed fluctuations are analogous
in origin to a well-known mesoscopic effect, universal conductance fluctuations due
to interference between different paths in the chaotic regime.

In sum, non-classical additions to the basic semiclassical models (such as diffractive
orbits, ghosts and bifurcations, tunnelling effects and saddle orbits) are valuable tools
for the interpretation of novel features in quantum spectra in the chaotic regime.
These are detailed in the following sections, but first we briefly outline some other
key areas in the field.

(b) Quantum chaos on long time-scales

The effects discussed above (including the corrections to periodic orbit theory) all
appear as low-resolution features in the experimental energy spectra of atoms and
mesoscopic devices. This is tantamount to restricting oneself to short time-scales. In
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other words, they are accounted for by a small subset (about 3 for the mesoscopic
system and about 100 for atoms) of periodic orbits. These are the shortest orbits,
also responsible for the strongest ‘scarring’.

Including longer orbits has the effect of resolving finer and finer details of the
semiclassically computed spectrum. One might thus hope to obtain fully resolved
eigenvalue spectra obtained purely from periodic orbits and their classical stabil-
ities. Unfortunately, the number of periodic orbits proliferates exponentially with
increasing period. The Gutzwiller formula is a non-convergent infinite sum. Any
semiclassical calculation of a quantum spectrum in the chaotic regime will eventu-
ally be overwhelmed by this exponential ‘wall’ of unstable periodic orbits.

In the problem termed the ‘quantization of chaotic systems’ the aim is to extract
actual eigenvalues by improving the convergence of the Gutzwiller formula. Nowa-
days this approach is seldom of practical value, since new powerful algorithms mean
that computational solutions of the Schrödinger equation are preferable, but there
are interesting and deep issues in the connection between classical and quantum
behaviour in the chaotic regime. Much effort has in fact been expended by quantum
chaologists in addressing this problem and pushing semiclassical methods deep into
the long-time limit with (Berry 1989; Keating 1993) or even without (Bogomolny
1992) periodic orbits. However, many quantum chaologists have switched over to
quantum field theoretical methods as a tool for the study of spectral statistics or
spectral ‘correlations’ of disordered mesoscopic systems (see the textbook on the
subject of supersymmetric methods by Efetov (1997)).

An often addressed question is, ‘on what time-scales will quantum and semiclassi-
cal dynamics part company?’ One early answer was the ‘log-time’, tlog. A minimum
uncertainty wave packet launched along a classical orbit will spread rapidly if the
underlying trajectories are diverging exponentially with time as expλt. Observed
effects from constructive interference as a wave packet recurs along a periodic path
and interferes with itself decay exponentially. The time-scale for a wave packet to
spread over the available phase space is tlog ∼ 1/λ log ~−1. Another, much longer
time-scale is the Heisenberg time, tH ∼ ~/∆E, where ∆E is the typical spacing
between eigenenergies. The time-evolution of a quantum system cannot exhibit expo-
nential divergence indefinitely, since a normal quantum eigenstate is a superposition
of discrete eigenfrequencies. On a long enough time-scale its evolution must be quasi-
periodic; hence there can be no chaos in the classical sense, in a quantum system.
The discreteness of a quantum system becomes apparent on the time-scale tH. How-
ever, quantum suppression of chaos can appear on an intermediate time-scale, tB, the
so-called ‘break-time’, which is of much interest. tB depends strongly on the dimen-
sionality of the system. An important, unresolved issue is whether one can estimate
this very quantal parameter, the break-time, which has its origin in wave interference
effects, from classical periodic orbits. The explanation may (see, for example, Cohen
1998) involve considering correlations between the actions of long periodic orbits.

In atomic physics there are two especially important problems associated with
chaotic dynamics on longer time-scales: dynamical localization and spectral statis-
tics. Dynamical localization was an effect first identified in a model problem, a quan-
tum kicked rotor (Casati et al . 1979). For a periodically driven rotating particle
subjected to a regular sequence of impulses the classical dynamics is chaotic and the
energy grows diffusively. The quantum equivalent will follow this classical behaviour
up to the break-time, tB, after which the chaotic diffusion is arrested. The quantum
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particle’s energy becomes exponentially localized about the initial energy with a dis-
tribution width characteristic of the particular system. This in effect is a mechanism
for the quantum suppression of chaos. Fishman et al . (1982) showed that it is analo-
gous to Anderson localization, the exponential localization of electron wave functions
in disordered materials—a destructive interference effect that restricts conductivity.
The ionization of Rydberg atoms by a microwave field was shown to manifest local-
ization and so became the archetypal example for the experimental and theoretical
study of chaos (Casati et al . 1987). Only recently though have accurate quantal
calculations been undertaken for the full two- or three-dimensional case by diagonal-
ization of the Floquet Hamiltonian with complex coordinate rotation (Zakrzewski et
al . 1995). Also recently, an extremely clean and convincing experimental demonstra-
tion of dynamical localization in cold atoms in traps (Moore et al . 1996) was carried
out.

2. Periodic orbits and irregular spectra

The Gutzwiller trace formula (see, for example, Gutzwiller 1990) and periodic orbit
theory have provided a powerful framework for the analysis of chaotic spectra. The
trace formula makes use of the relation between the quantal spectrum (the density
of states),

N(E) =
∑
n

δ(E − En), (2.1)

and the trace of the retarded Green’s function,

N(E) = −(1/π) Im Tr Ĝ(E) (2.2)

= −(1/π) Im
∫

dq dq′ δ(q − q′)G(q, q′, E). (2.3)

The semiclassical form for the Green’s function,

G(q, q′, E) ∼
∑
γ

exp[i(Sγ(q, q′, E)/~− νγπ/2)]
|Dγ |1/2 , (2.4)

as a sum over all classical paths γ starting and returning to point q is then substituted
into the integral in equation (2.3), where, for a classical path γ, Sγ is the classical
action, S =

∫
p dq, Dγ is a matrix of derivatives of S, and ν is a phase that keeps a

count of turning points and caustics.
Gutzwiller chose a local reference frame where the components of position q are

parallel and transverse to the trajectory (for the simplest case, a two-dimensional
system). Then he evaluated the integral equation (2.3) by Taylor expanding the
action near closed paths q = q′ up to quadratic order transverse to the orbit in order
to describe the behaviour of the neighbouring trajectories. In the semiclassical limit
S/~ is very large, exp i(S/~) oscillates violently, so the integral must be evaluated
at points where the phase is stationary. In the integral in equation (2.3), this selects
those paths for which ∂S/∂q − ∂S/∂q′ = 0, i.e. P = P ′, initial and final momenta
must be equal. This implies that only periodic trajectories—which start and finish
with the same momentum at the same point and hence go on to retrace themselves—
are involved, rather than the much larger set of closed paths that start and finish at
the same point but then do not retrace themselves.

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Manifestations of chaos 1367

The result is the Gutzwiller trace formula: N(E) is written as the sum of a smooth
background term together with an oscillatory part of the form,

Nosc(E) =
1
π

Im
∑
n

Tn
i~
∑
j

exp(ij(Sn(E)/~− µnπ/2))
|det(M j

n − I)|1/2
, (2.5)

where n is an index representing each periodic orbit, j indicates the number of circuits
(traversals) around each orbit, Sn is the classical action, Tn the period, and M j

n is
the classical stability matrix (‘monodromy matrix’), which describes the behaviour of
neighbouring trajectories. For the two-dimensional atomic, molecular and mesoscopic
systems M is a simple 2× 2 matrix obtained by considering a small displacement in
position and momentum δq, δP transverse from the periodic orbit (PO) on a surface
of section through phase space. The next intersection of the displaced trajectory
with the surface of section is at δq1, δP1 to the PO. M is obtained by the linearized
relation between the two displacements:(

δq1
δP1

)
=
[
m11m12
m21m22

](
δq
δP

)
.

In the Gutzwiller formula each path is weighted by the diagonal elements of the stabil-
ity matrix∼ 1/|m11+m22−2|1/2. For an unstable orbit the amplitude of each periodic
orbit can be re-expressed in terms of a classical parameter the Liapunov exponent,
λn, which quantifies the rate at which paths in the neighbourhood diverge exponen-
tially from each other, since in equation (2.5) |det(M j

n − I)|1/2 = sinhTnλn/2.
Hence the Gutzwiller formula makes an important and subtle connection between

the exponential divergence characteristic of chaos and the properties of the quantum
spectrum. As seen below, the theory of photoabsorption involves a different semi-
classical theory since the spectrum is weighted by an oscillator strength. In that case
each orbit is weighted by an off-diagonal element of M , i.e. ∼ 1/|m12|1/2.

3. Beyond periodic orbits

An increasing number of failures of the basic assumptions made above—that the
stationary phase treatment is valid and that periodic orbits are isolated—have been
identified in atomic and mesoscopic experiments. They are often termed ‘~-dependent
corrections’ since they appear at different powers of ~ relative to the leading order
(periodic or closed orbit) term. The examples discussed below are not systematic
failures of the semiclassical approximation, affecting all POs uniformly, but rather
failures due to specific dynamical properties of the atoms or related systems. Below
we describe these more exotic contributions and the dynamical conditions which give
rise to them. We concentrate on the phenomena needed to interpret real atomic and
mesoscopic spectra.

(a) Bifurcations and ghosts

A critical assumption in the derivation of the Gutzwiller formula is that the sta-
tionary phase points are isolated. In the neighbourhood of a periodic orbit, there
should not be another periodic orbit of similar action. However, at a bifurcation,
new periodic orbits originate from the bifurcating orbit and this assumption is no
longer valid.
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At the bifurcation M tends to the identity so in the Gutzwiller trace formula
the amplitudes become infinite since m11 + m22 − 2 tend to zero. In bifurcations
of atoms in magnetic fields too m12 goes to zero, so closed-orbit theory diverges.
This divergence represents a failure of the semiclassical approximation since the
corresponding modulation of the quantum spectrum for small ~ merely becomes
large (increasingly so as the semiclassical limit is approached).

The procedure for removing the divergence due to a bifurcation is well known
(Ozorio de Almeida & Hannay 1987), but is specific to each type of bifurcation: there
are five main types for well-behaved Hamiltonian systems. Perhaps the simplest type
is a tangent bifurcation: a stable periodic orbit and an unstable periodic orbit coalesce
and vanish. Classically, it appears to be a case of mutual annihilation. In the quantum
case, ghost modulations persist, associated with periodic orbits in complex phase
space. The technique for removing the divergence is analogous to the treatment of
rainbow scattering in atomic physics (Child 1991). Near the energy of the bifurcation
εb, a normal form for the action is used, where the action is expanded to cubic order,
rather than quadratic as for the ordinary trace formula. It now contains terms (in
appropriately scaled coordinates) like (ε − εb)δq + (δq)3, where ε is a dynamical
parameter like a scaled energy. This functional form will yield two stationary phase
points, for δq2 = (ε − εb)/3. This implies two real roots above the bifurcation and
two complex roots below (the ‘ghosts’ (Kuś et al . 1993)). An improved treatment,
to quartic order ‘uniform approximation’, was given by Schomerus & Sieber (1997).

Ghosts can be found by solving Hamilton’s classical equations in complex phase
space and looking for periodic orbits. They are generally very weak contributions to a
quantum spectrum, only visible very close to a bifurcation since the complex part of
the action ensures that their contribution exp i(Sr + iSi)/~ is damped exponentially;
typically, Si increases rapidly for energies ε below the bifurcation. They have been
investigated theoretically in atoms in magnetic fields by Main & Wunner (1997).

However, experiments in quantum wells revealed surprisingly persistent ‘ghosts’
(Monteiro et al . 1997a; Saraga & Monteiro 1998a). Current oscillations due to coher-
ent recurrences of electrons ‘bouncing’ back and forth between the walls of a quantum
well are shown in figure 5. The dynamics can be accurately related to the character-
istic shape and frequency of the oscillations; corresponding quantal calculations are
shown. A ‘ghost’ region of oscillations is indicated where we can find no real periodic
orbit that can account for these oscillations. In Saraga et al . (1998), the standard pro-
cedure of locating complex periodic orbits was followed. A ghost orbit was found, but
its contribution decayed far faster than the experimental oscillations. Several other
problematic experimental regions were similarly identified. As explained below, the
puzzle of these ‘long-lived’ ghosts led to a redevelopment of the semiclassical theory
for this system, in terms of complex, non-periodic paths, which we termed ‘saddle
orbits’.

(b) Observed spectra: periodic paths, closed paths or saddle paths?

Typical atomic, molecular and mesoscopic experiments do not detect the density
of states

N(E) =
∑
n

δ(E − En).
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Figure 5. Comparison between experimental and theoretical current oscillations for quantum
wells in magnetic B and electric F fields tilted at θ = 11◦ to each other. The dynamics is
roughly constant along parabolas of constant ε = V/LB2, where V is voltage drop and L is the
width of the well. The ghost region below the bifurcation at 6500 is indicated.

They detect rather a quantum spectrum weighted by some observable Â like an
oscillator strength or a current,

I(E) =
∑
n

〈n|Â|n〉δ(E − En).

In this case, instead of the Gutzwiller formula, a separate semiclassical theory in-
corporating the relevant matrix element for the expectation value of Â must be
employed. Now the trace must include Â:

I(E) = −(1/π) Im Tr Ĝ(E)Â. (3.1)

As previously (in a two-dimensional system), the semiclassical form of

G(E) ∼
∑
γ

1

m
1/2
12

exp[i(S(q, q′)/~− νπ/2)]

as a sum over paths from an initial point q to final point q′ is used.
Often the weighting involves a projection over some initial state φ, i.e. Â = |φ〉〈φ|.

In many cases one assumes a simple Gaussian form φ ∼ exp(−βq2/2). This has been
used for the semiclassical description of Franck–Condon factors in the excitation
of molecules from a ground vibrational state (Zobay & Alber 1994; Huppert et al .
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1997). A similar form is used for the calculation of the oscillations in the tunnelling
current of quantum wells in external fields, since the experiments involve tunnelling
from an initial ground Landau state.

There is already a considerable body of work on semiclassical theories of observed
spectra in the chaotic regime. Depending on the dynamics and the degree of local-
ization of Â (i.e. the width of the Gaussian), one can class these calculations into
four distinct ‘categories’.

(1) The usual formulation of the theory was proposed by Eckhardt et al . (1992).
In this case Â was assumed to be smooth in phase space and very slowly
varying relative to G, which oscillates rapidly in the semiclassical limit as ∼
exp i(Spath)/~.

Eckhardt et al . evaluated the trace in phase space rather than position space
by taking Wigner transforms of Â and Ĝ. Then the trace in equation (3.1) is
an integral over all of phase space:

I(E) = −(1/π) Im
∫

dQdP A(P,Q)G(P,Q). (3.2)

The phase-space form (Wigner function) of a the ground harmonic oscillator
is especially simple: A(P,Q) ∼ exp−βQ2 − P 2/β. The semiclassical Green’s
function in phase space takes the standard form:

G(P,Q) ∼
∫

dX
∑
γ

1

m
1/2
12

exp[i(S(Q−X/2, Q+X/2)/~− iPX/~− νγπ/2)].

To calculate our spectrum we now have to consider three separate integrals
involving rapidly oscillating functions (over P,Q,X). These will yield three
separate stationary phase conditions. If we disregard the variation in A, the
stationary points are then obtained solely from the oscillations in the Green’s
function. For the integral over P , the phase must be stationary with respect to
variations in P so X = 0. This means that the orbit is closed. The integral over
X yields the average of the initial and final momenta p, p′, but does not require
them to be equal, i.e. ∇X(phase) = P − (p+p′)/2 = 0. The final integral yields
−∂S/∂Q = p = p′ = ∂S/∂Q′, i.e. periodic orbits.

If A is very smooth transverse to the periodic orbit, Eckhardt et al . found that
the trace could be evaluated in the same manner as Gutwiller.

The result is a weighted spectrum, which is a sum over periodic orbits:

Nosc(E) =
1
π

Im
∑
n

An
i~
∑
j

exp(ij(Sn(E)/~− µnπ/2))
|det(M j

n − I)|1/2
. (3.3)

The only difference from the standard Gutzwiller formula is that each periodic
orbit is now weighted by the average of the observable over one period of the
orbit, i.e. An =

∫ T
0 dt A.

This formula has been applied to Franck–Condon spectra of chaotic molecules
like water (see, for example, Huppert et al . 1997).
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(2) A second, intermediate type of theory was adopted by Zobay & Alber (1994),
Narimanov et al . (1998) and Bogomolny & Rouben (1998). In rough terms
the method is as follows: the observable does not determine the paths around
which the quantum spectrum will be constructed (the stationary phase points).
These are still chosen by considering only the variation in S. However, having
chosen these paths, one then considers explicitly the variation of the observable
Â in the integral in equation (3.2). These theories still yield spectra as sums of
periodic orbits but with a weighting different from the Gutzwiller formula.

Zobay & Alber applied this to a molecular photoabsorption problem (with
CO2). In this case the observable Â is sufficiently smooth that the station-
ary phase points were obtained by considering only oscillations in the Green’s
function. As in the previous case this implies periodic orbits for the stationary
phase points so q = q′ and p = p′. In the usual semiclassical procedure they
carried out a Taylor expansion of the phases up to quadratic order about the
periodic orbits. However, in this case the explicit functional form initial state
A(P,Q) ∼ exp(−βQ2 − P 2/β) was included in the integrals over P and Q in
equation (3.2). The result is a more accurate expression for the Franck–Condon
factors, which has the added bonus of not diverging at bifurcations.

The intense interest generated by experiments on quantum wells in tilted fields
(Fromhold et al . 1994; Muller et al . 1995; Wilkinson et al . 1996) led to a search
for a semiclassical periodic-orbit-type theory that describes the oscillations in
the tunnelling current. Narimanov et al . (1998) proposed a periodic theory for
the current, also following this phase-space approach. Bogomolny & Rouben
(1998) derived a simple analytical expression for the current, starting from the
position space Green’s functions.

However, comparisons with fully quantal results and the experiments showed
that the periodic orbit expressions failed drastically over wide regimes of the
experiment. One example is the regime shown in figure 5 above where the only
accessible periodic orbits with the right period vanish intermittently into the
complex plane leaving ‘ghosts’, which are replaced subsequently by new real
orbits that appear elsewhere. Periodic orbit theories, even ‘patched’ with the
normal forms described in the previous section, give poor results.

(3) The third approach to the observable Â is needed in the case where Â is so
localized that one must take it into account even when choosing the important
paths (the stationary phase points). The quantum well problem represents
a good example of this case, since the initial state is a narrow Gaussian. One
could follow the phase-space approach as above, but a formulation in coordinate
space (Bogomolny & Rouben 1998) gives the quickest route to the key results.
For paths from x, z to x′, z′ the quantum well matrix element yields oscillatory
integrals of the form,

∼
∫

dz
∫

dz′
∑
cl

eiS(z,z′)/~−β(z2+z′2)/2~. (3.4)

There are the path-dependent oscillations eiS(z,z′)/~ due to the Green’s function
and Gaussians exp(−β(z2 + z′2)/2~) due to the initial state |φ〉 in the matrix
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Figure 6. Quantal, experimental and semiclassical amplitudes for quantum wells in fields. The
semiclassical theory, which uses complex, non-periodic paths called saddle orbits (SOs) instead
of periodic orbits, gives excellent agreement with results and experiment, while periodic orbit
theory in this instance does not. The figure shows amplitudes of period-one oscillations of the
current at θ = 11◦ for low (a) and high (b) values of V/LB2. (c) Amplitudes of period-two
oscillations at θ = 11◦. (d) Amplitudes of period-two oscillations at θ = 27◦.

elements. If the variation of the Gaussian is as fast as the oscillations from the
action, then, instead of POs, one has a saddle point condition defined by

i
∂S

∂z
= βz, i

∂S

∂z′
= βz′. (3.5)

These conditions define paths that are complex and non-periodic. These saddle
orbits (Saraga & Monteiro 1998b) were obtained by solving classical equations
of motion allowing time and position to have imaginary values. One can obtain
a simple analytical expression, in terms of saddle orbits for the experimental
current of quantum wells in tilted fields, that gives excellent agreement with
both experiment and quantal calculations as seen in figure 6. Unlike ghosts,
saddle orbits are not periodic. Like ghosts they are complex, but are peculiar
because they can contribute substantially even when the imaginary component
of the action is large. An additional complex amplitude partly cancels the e−iS/~

damping so their contribution can decay much more slowly with ~. Hence,
they solve the puzzle of the excessively large ‘ghost’ oscillations seen in the
experiments.
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We expect that saddle orbits will potentially be relevant in molecular spectra
(Franck–Condon spectra) involving photoabsorption from a ground vibrational
state.

(4) Photoabsorption spectra of atoms in strong fields exemplify a fourth type of
semiclassical theory. The static field eigenstates ψn are also weighted by an
oscillator strength |〈ψnDψ1s〉|2. In this case our initial state |φ >= |Dψ1s >
will be something like the ground state of an atom, acted on by D, a dipole
operator. One can, as above, use the Green’s function form for the oscillator
strength 〈φ|Ĝ|φ〉.
This initial state is extremely localized, more so than even the quantum well
case. Only paths that start and end near the nucleus can contribute. The impor-
tant difference relative to the three types of theory described above is that the
semiclassical form of the Green’s function is not valid near the nucleus. Du &
Delos (1988) and Gao et al . (1992) instead employed the full quantal Green’s
function over a small region near the multielectron core. Fortunately, the effects
of a magnetic or electric field are negligible near the core, so the exact Green’s
function is given in terms of regular and irregular Coulomb functions and quan-
tum defect theory. Far from the nucleus Du & Delos employed semiclassical
waves along classical orbits that return to the nucleus (closed orbits) and were
matched to the waves at the core.

The basic closed-orbit theory has had tremendous success in interpreting quan-
titatively features of the experimental photoabsorption spectra of hydrogen in
external fields (Main et al . 1994). The need for the full quantal treatment
near the multielectron core is reflected in ‘diffractive’ corrections to the pure
semiclassical treatment (Dando et al . 1995, 1998).

To summarize, we have shown that current semiclassical theories used to interpret
observed spectra for chaotic or at least non-integrable atomic, molecular and related
systems can be grouped together depending on the degree of localization of the
relevant observable.

(c) Diffractive orbits: atoms in fields

Periodic orbit theory represents a sort of ray-optics limit to the full quantum wave
behaviour. Geometric optics becomes a poor approximation in certain situations such
as the rim of a disc, where ‘creeping paths’ can illuminate areas that should be dark,
or when the light strikes a sharp corner or a vertex. In the atomic case, the small
electronic core is about the same size as the de Broglie wavelength of the Rydberg
electron ca. 1 au. Hence, new modulations in addition to the usual periodic orbits
appear in the quantum spectrum and the strengths of all contributions differ from
atom to atom.

R-matrix type calculations on non-hydrogenic atoms in magnetic fields showed
additional peaks not corresponding to known closed orbits. In addition, the statistical
distributions of energy levels indicated that non-hydrogenic atoms were much more
‘chaotic’ (Monteiro & Wunner 1990; Jans et al . 1993).

At first sight it seemed that the effect of a non-hydrogenic core was to induce
chaos in a non-hydrogenic atom or molecule, even at low energies, where hydrogen

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1374 T. S. Monteiro, S. M. Owen and D. S. Saraga

499 500 501 502

503 504 505 506

Figure 7. Quantum phase-space distributions (Wigner functions) for a set of levels of a
non-hydrogenic atom (even l, m = 0, δl=0 = 0.5; the level number, counting from the ground
state, is shown) in a magnetic field for scaled energy ε = −0.5. Black indicates high intensity. In
this regime the classical dynamics is regular and states of hydrogen are localized on single tori
as shown in figure 2c. The non-hydrogenic states shown in the figure are typically well localized
on two or three ‘torus-like’ structures. This behaviour differs from the typical distribution in
the classically chaotic regime, where quantum states will not show ‘torus’ structures and unless
strongly scarred will be more ‘ergodic’ (more evenly distributed over phase space).

is regular. However, the quantum wave functions did not seem typical of a chaotic
system. They remained concentrated on regular torus-like structures. But while for
hydrogen in the regular regime each quantum state may be assigned a single torus,
in the non-hydrogenic case, the typical state is a set of two or three connected ‘tori’
(Jans et al . 1993). This is illustrated in figure 7.

The classical dynamics corresponds to a process we termed ‘torus-hopping’ (Dando
et al . 1994). While away from the nucleus, the motion is entirely regular and con-
fined to a torus. Hence the localization on tori reflects the short-time dynamics,
analogous to quantum scarring. Intermittently, the particle is scattered at the core.
For quantitative results this process cannot be described semiclassically.

The periodic orbit theory of diffraction was developed recently for quantum par-
ticles moving in billiards (Vattay et al . 1994; Primack et al . 1996; Bruus & Whelan
1996). If the potential has a discontinuity or a structure smaller than the de Broglie
wavelength of the particle, the geometric optics corresponding the Gutzwiller trace
formula is insufficient. In the atomic case this means that the trace formula fails to
describe atoms other than hydrogen. What is needed is a procedure to combine the
Gutzwiller formula with quantum defect theory in a simple way.

For our purposes, a good example of a diffractive system is the cardioid billiard
(Bruus & Whelan 1996), which has a single sharp vertex. In that case, periodic
orbits that miss the vertex will simply involve specular reflection at the walls of
the enclosure, like an ordinary billiard. But paths that strike the vertex provide a
new source of amplitude that can ‘feed’ trajectories in ‘unexpected’ directions. The
Green’s function from which the quantum density of states is obtained now has two
components, a geometric contribution Gg(E) analogous to the trajectories in the
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Gutzwiller formula and a new, diffractive contribution GD(E):

N(E) = − 1
π

Im TrGg(E)︸ ︷︷ ︸
geometric

− 1
π

Im TrGD(E)︸ ︷︷ ︸
diffractive

. (3.6)

An important result due to Vattay et al . (1994) is that the trace integral taken
between the nth and (n + 1)th diffractive points is proportional to the semiclassi-
cal Green’s function between those points. The trace over the second (diffractive)
contribution is

TrGD(E) =
∑
p

Tp
i~
∏
n

dnG(qn, qn+1;E), (3.7)

where Tp is the sum of periods taken over the paths between the vertices and dn is
the diffraction constant specific to each dynamical system.

In order to adapt the theory to a Rydberg atom like lithium, the non-hydrogenic
core must be represented as a diffractive source (Dando et al . 1998). The crucial step
is to obtain an expression for the diffractive constant, d, in terms of quantum defects.
To this end, we considered an incoming Coulomb wave, ψ(−)

Coul, which approaches the
atomic core from infinity at an angle θf to the z-axis. On reaching the core, ψ(−)

Coul
produces a scattered wave, ψscatt, which feeds outgoing semiclassical waves along
periodic orbits; ψscatt can be decomposed into an outgoing Coulomb wave together
with a core-scattered wave, as in Gao et al . (1992):

ψscatt(r, θ) = ψ
(+)
Coul(r, θ) + ψθfcore(r, θ).

Our first approximation consisted of equating ψ(+)
Coul with the source for geometric

paths (i.e. the usual Gutzwiller trace formula). The core-scattered wave ψθfcore, aris-
ing from the incoming wave at angle θf , was equated with the source of diffractive
semiclassical waves. For a small atom like lithium or helium in a magnetic field, it
takes the form of a simple s-wave since only quantum defects δl<2 are non-negligible.
The theory is general, but we illustrate it with the pure s-wave case. The diffractive
constant d was taken to be the fractional amplitude scattered by the core:

d(δ0, θi, θf) = ψδ0,θfcore (r0, θi)/ψ
(−)
Coul(r0, θf). (3.8)

Substituting for this diffractive constant, which is a function of δ0, the quantum
defect for l = 0 in equation (3.7) gives us a connection between the trace formula with
diffraction and quantum defect theory. Analytical expressions can easily be obtained
for the periodic orbit amplitudes for each atom. They now depend not just on the
stability matrix but also on the quantum defects.

Figure 8 shows a comparison between fully quantal calculations on hydrogen and
lithium and the diffractively corrected Gutzwiller formula. Away from bifurcations
the new formula agrees with the quantal results to within 1%. New pure diffractive
modulations are indicated with a D. Modulations due to combinations of periodic
orbits (another diffractive phenomenon not seen in hydrogen) are also seen. The
analogous photoabsorption effect (combinations of closed orbits) were seen in several
atomic experiments (Delande et al . 1994; Raithel et al . 1994; Courtney et al . 1994).

There is an especially important difference between the model cardioid billiard and
a real atom. In the former, orbits are either geometric or diffractive. In the atomic
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Figure 8. (a) Comparison of Fourier transforms of the density of states for hydrogen and lithium
(δ = 0.4045π) in a static magnetic field at constant scaled energy ε = −0.2 from a fully quantal
calculation with average ~ = 1/90. Note the changes in amplitudes of periodic orbits and new
modulations due to diffractive orbits in the lithium case. (b) Comparison between quantal and
semiclassical difference spectra obtained by coherently subtracting the Fourier transforms shown
in (a). This exposes the diffractive contributions to the spectrum and eliminates contributions
from orbits that do not pass through the core. Shown are changes in periodic orbit amplitudes
due to diffraction, diffractive combinations of two periodic orbits and pure diffractive orbits,
marked D1 and D2. Away from bifurcations, which affect V1 and D2, the agreement between
quantum and semiclassical calculations, shown in (b), is excellent.

case, orbits that approach the nucleus are treated as pair of trajectories which coin-
cide, one of which is diffractive, the other geometric. They are de-phased relative to
each other. The interference between the two trajectories explained puzzling features
seen in the quantum spectra, where as a function of quantum defect some periodic
orbit amplitudes would increase while others would decrease.

To summarize, we conclude that although the behaviour of non-hydrogenic spectra
in external fields mimics some signatures of chaos at low energies, the dynamics is
best understood as regular motion with diffraction (Dando et al . 1998). We recall
that the statistics for the lowest few thousand states were found to be nearer the
‘chaotic’ (GOE) for non-hydrogenic atoms (Monteiro & Wunner 1990; Monteiro et
al . 1992; Jans et al . 1993). This was confirmed by a recent experiment, resolving
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individual quantum states (Held 1997). However, it has now been found that nearer
the semiclassical limit, the statistical signature of the spectra non-hydrogenic atoms
in magnetic fields tends to a new form (Jonckheree et al . 1998), termed ‘half-Poisson’
(Bogomolny et al . 1998). The nearest-neighbour spacings are characterized by short-
range level repulsion but with a long-range ‘Poissonian’ tail characteristic of regular
systems.

T.S.M. is indebted to Paul Dando and Dominique Delande for helpful discussions in prepar-
ing this work. S.M.O. and D.S.S. acknowledge studentships from the EPSRC and the TMR
programme, respectively. T.S.M. acknowledges funding from the EPSRC.
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Kuś, M., Haake, F. & Delande, D. 1993 Prebifurcation periodic ghost orbits in semiclassical
quantization. Phys. Rev. Lett. 71, 2167–2171.

McEuen, P. L. 1997 Artificial atoms: new boxes for electrons. Science 278, 1729–1730.
Main, J. & Wunner, G. 1997 Hydrogen atom in a magnetic field: ghost orbits, catastrophes, and

uniform semiclassical approximations. Phys. Rev. A 55, 1743–1759.
Main, J., Wiebusch, G., Welge, K., Shaw, J. & Delos, J. B. 1994 Recurrence spectroscopy:

observation and interpretation of large scale structure in the absorption spectra of atoms in
magnetic fields. Phys. Rev. A 49, 847.

Marcus, C. M., Rimberg, A. J., Westervelt, R. M., Hopkins, P. F. & Gossard, A. C. 1992
Conductance fluctuations and chaotic scattering in ballistic microstructures. Phys. Rev. Lett.
69, 506–509.

Monteiro, T. S. & Taylor, K. T. 1990 The H2 molecule in a magnetic field. J. Phys. B 23, 427.
Monteiro, T. M. & Wunner, G. 1990 Quantum manifestations of chaos in Rydberg atoms in

magnetic fields. Phys. Rev. Lett. 65, 1100–1103.

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Manifestations of chaos 1379

Monteiro, T. S., Wunner, G. & Taylor, K. T. 1992 In Irregular atomic systems and quantum
chaos (ed. J.-C. Gay), pp. 261–273. Montreux: Gordon and Breach.

Monteiro, T. S., Delande, D., Fisher, A. J. & Boebinger, G. S. 1997a Bifurcations and the
transition to chaos for the resonant tunneling diode. Phys. Rev. B 56, 3913.

Monteiro, T. S., Delande, D. & Connerade, J.-P. 1997b Have quantum scars been observed?
Nature 387, 863.

Moore, F. L., Robinson, J. C., Bharucha, C. F., Sundaram, B. & Raizen, M. G. 1996 Atom
optics realization of the quantum delta-kicked rotor. Phys. Rev. Lett. 75, 4598–4601.

Muller, G., Boebinger, G. S., Mathur, H., Pfeiffer, L. N. & West, K. W. 1995 Precursors and
transition to chaos in a quantum well in a tilted magnetic field. Phys. Rev. Lett. 75, 2875–
2878.

Narimanov, E. E., Stone, A. D. & Boebinger, G. S. 1998 Semiclassical theory of magnetotrans-
port through a quantum well. Phys. Rev. Lett. 80, 4024–4027.

O’Mahony, P. F. & Taylor, K. T. 1986 Quadratic Zeeman effect for nonhydrogenic systems:
application to the Sr and Ba atoms. Phys. Rev. Lett. 57, 2931–2934.

Ozorio de Almeida, A. & Hannay, J. H. 1987 Resonant periodic-orbits and the semiclassical
energy spectrum. J. Phys. A 20, 5873–5883.

Pollak, E. 1990 Periodic orbit assignment for spectra of highly excited molecular systems. Phil.
Trans. R. Soc. Lond. A 332, 343–359.

Primack, H., Schanz, H., Smilansky, U. & Ussishkin, I. 1996 Penumbra diffraction in the quan-
tization of dispersing billiards. Phys. Rev. Lett. 76, 1615–1618.

Raithel, G., Held, H., Marmet, L. & Walther, H. 1994 Rubidium Rydberg atoms in strong static
fields. J. Phys. B 27, 2849–2866.

Saraga, D. S. & Monteiro, T. S. 1998a Quantum wells in tilted fields: semiclassical analysis and
experimental evidence for effects ‘beyond’ periodic orbits. Phys. Rev. E 57, 5252.

Saraga, D. S. & Monteiro, T. S. 1998b Quantum chaos with complex, non-periodic orbits. Phys.
Rev. Lett. 81, 5796–5799.

Saraga, D. S., Monteiro, T. S. & Rouben, D. C. 1998 Periodic orbit theory for RTDs: comparison
with quantum theory and experimental results. Phys. Rev. 58, R2701–R2705.

Schomerus, H. & Sieber, M. 1997 Bifurcations of periodic orbits and uniform approximations.
J. Phys. A 30, 4563–4596.

Vattay, G., Wirzba, A. & Rosenqvist, P. E. 1994 Periodic orbit theory of diffraction. Phys. Rev.
Lett. 73, 2304–2307.

Weston, T. & Child, M. S. 1996 Spectral consequences of periodic orbit bifurcations of AB(2)
stretching vibrational modes. Chem. Phys. Lett. 262, 751–758.

Wilkinson, P. B., Fromhold, T. M., Eaves, L., Sheard, F. W., Miura, N. & Takamasu, T. 1996
Observation of scarred wavefunctions in a quantum well with chaotic electron dynamics.
Nature 380, 608–610.

Wintgen, D. 1987 Connection between long-range correlations in quantum spectra and classical
periodic orbits. Phys. Rev. Lett. 58, 1589–1592.

Zakrzewski, J., Delande, D. & Buchleitner, A. 1995 Nonspreading electronic wave packets and
conductance fluctuations. Phys. Rev. Lett. 75, 4015–4018.

Zobay, O. & Alber, G. 1994 Periodic orbits and molecular photoabsorption. J. Phys. B 26, 1775.

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/

